Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38626731

ABSTRACT

To localize the unusual cardiac activities non-invasively, one has to build a prior forward model that relates the heart, torso, and detectors. This model has to be constructed to mathematically relate the geometrical and functional activities of the heart. Several methods are available to model the prior sources in the forward problem, which results in the lead field matrix generation. In the conventional technique, the lead field assumed the fixed prior sources, and the source vector orientations were presumed to be parallel to the detector plane with the unit strength in all directions. However, the anomalies cannot always be expected to occur in the same location and orientation, leading to misinterpretation and misdiagnosis. To overcome this, the work proposes a new forward model constructed using the VCG signals of the same subject. Furthermore, three transformation methods were used to extract VCG in constructing the time-varying lead fields to steer to the orientation of the source rather than just reconstructing its activities in the inverse problem. In addition, the unit VCG loop of the acute ischemia patient was extracted to observe the changes compared to the normal subject. The abnormality condition was achieved by delaying the depolarization time by 15ms. The results involving the unit vectors of VCG demonstrated the anisotropic nature of cardiac source orientations, providing information about the heart's electrical activity.


Subject(s)
Electrocardiography , Heart , Humans , Electrocardiography/methods , Heart/physiology , Algorithms , Models, Cardiovascular , Computer Simulation , Myocardial Ischemia/diagnosis , Signal Processing, Computer-Assisted
2.
Biomed Phys Eng Express ; 9(5)2023 08 03.
Article in English | MEDLINE | ID: mdl-37487480

ABSTRACT

The 3D to 2D registration technique in spine surgery is vital to aid surgeons in avoiding the wrong site surgery by estimating the vertebral pose. The vertebral poses are estimated by generating the spatial correspondence relationship between pre-operative MR with intra-operative x-ray images, then evaluated using a similarity measure. Different similarity measures are used in 3D to 2D registration techniques to assess the spatial correspondence between the pre-operative and intra-operative images. However, to evaluate the registration performance of the similarity measures, the proposed framework employs three different similarity measures: Binary Image Matching, Dice Coefficients, and Normalized Cross-correlation technique to compare the images based on pixel positions. The registration accuracy of the proposed similarity measures is compared based on the mean Target Registration Error, mean Iteration Times, and success rate. In the absence of simulated test images, the experiment is conducted on the simulated AP and Lateral test images. The experiment conducted on the simulated test images shows that all three similarity measures work well for the feature based 3D to 2D registration in that BIM gives better results. The experiment also indicates high registration accuracy when the initial displacements are varied up to ±20 mm and ±100of the translational and rotational parameters, respectively, for three similarity measures.


Subject(s)
Imaging, Three-Dimensional , Spine , Imaging, Three-Dimensional/methods , Spine/diagnostic imaging
3.
J Med Syst ; 36(3): 1943-51, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21267773

ABSTRACT

Choosing the most suitable treatment for the scoliosis relies heavily on accurate and reproducible spinal curvature measurement from radiographs. Our objective is to reduce the variability in spinal curvature measurement by reducing the user intervention and bias. In order to determine the reliability of the spinal curvature measurement as it is in the clinical measurement of scoliosis a methodological survey has been carried out that concludes with inter and intra observer error variation. The proposed method list out horizontal inclination of all the vertebrae's in terms of slopes using active contour models and morphological operators. This facilitates the radiologist to decide end vertebrae and hence inter/intra observer variation is completely eliminated. Tables 1 and 2 shows the observer error variation between manual and proposed methods in terms of mean and standard deviation.


Subject(s)
Image Processing, Computer-Assisted/standards , Scoliosis/diagnostic imaging , Spinal Curvatures/diagnostic imaging , Humans , Radiography , Spinal Curvatures/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...